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ABSTRACT
Before being able to communicate with one another over the In-
ternet, users in messaging applications need to discover each other
and learn their IP addresses. Today, this User Discovery process
is closely coupled with the communication provider. As a result,
these providers are able to find (i) who is talking to whom, (ii) who
is friends with whom and (iii) where is everybody located in the
Internet address space at any time, even when there was no commu-
nication channel ever established, positioning this way themselves
as powerful “Big Brothers”.

In this paper, we show that it is easy for friends to discover
each other without the need of a centralised service provider that
monitors each and every move they make. We propose OUTOPIA: a
system to provide privacy-preserving User Discovery on the Internet.
With OUTOPIA, users are able to discover each other, without
revealing their social connections. We implemented a prototype of
our approach and showed that it is inherently scalable, able to handle
tens of thousands of users per server. Our preliminary performance
results suggest that users are able to discover each other in no more
than a few milliseconds, while generating negligible traffic overall.

CCS CONCEPTS
• Security and privacy → Privacy protections; Pseudonymity,
anonymity and untraceability.
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1 INTRODUCTION
The first step of every single application on the Internet includes an
IP address discovery process: e.g., before a browser can download
a single byte from a web server, it first needs to find the server’s
IP address. These IP addresses are currently provided by the DNS
infrastructure: a third-party infrastructure, independent from any
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individual server or client, which translates domain names to IP ad-
dresses. The independent, distributed nature of DNS enables flexibil-
ity, reliability, and makes it practically impossible for any individual
organisation to control the domain name translation process.

The exact same discovery process is needed when user needs to
contact another user: although two friends may know each other
by name, in order for them to communicate over the Internet, they
need to know each other’s IP addresses. However, when web servers’
IPs do not change (or change sporadically), the mobile users’ IP
addresses change quite frequently: when users go to work, when
they return home, when they connect to a free WiFi in a restau-
rant, etc. Consequently, in user-to-user communication applications
(e.g., VoIP, chat, file/image/video sharing), the User Discovery pro-
cess constitutes an essential component for users to translate the
username of their friends to IP addresses of that very moment.

Contrary to the well-established discovery mechanism of the
Internet (i.e., the DNS), in user-to-user applications there is no inde-
pendent, third-party IP address translation infrastructure. Instead,
User Discovery is bundled with the communication process [1–3]
in a single service that enables users to both discover and com-
municate with each other. To make matters worse, contrary to the
DNS paradigm, users cannot query only for the friend they plan
to connect with. Instead, they have to upload their phone’s entire
address-book [4] in order for the service to (i) check if their friends
are users of the app and (ii) what is their current IP address, thus
compromising the privacy of their entire social graph. This means
that users reveal phone numbers of every single person they are
socially connected with, even if they do not ever communicate with
them through the app, even if these friends are not registered with
the specific app! [5, 6]

As a consequence, although the mentioned popular messaging
apps offer practical user discovery and encrypted conversation con-
tents, they have the power to collect a wealth of metadata including
(i) which user is talking to whom, (ii) which user is friends with
whom, and (iii) what is the IP address of all users at all times with-
out needing the users to exchange any message. The information
extracted from such metadata can be later sold [7–9] or included as
an asset in the company’s future buy-out [10, 11]. Recent revelations
show [12] that friend-lists and address-books are sought after by
Intelligence Agencies [13, 14]; by analysing a user’s social graph
one can reveal sensitive information such as interests, political or
religious beliefs, sexual preferences [15], etc.

Building a private User Discovery service that can protect meta-
data while being scalable, able to sustain an ever-increasing number
of users without imposing high overheads has been proved to be
extremely challenging [16]. In some cases, it can even become an
insurmountable obstacle to wider adoption of important commu-
nication services (e.g., PGP) [17]. Anonymity networks that allow
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Approach Purpose SOOBC Assumptions Scalability Overhead per
user (1M users)

Apres[19] 1-1 Messaging yes Tor immune to scalability of Tor (not evaluated)
traffic analysis

Pung[22] 1-1 Messaging yes - 32K active users 1,333 Kbps
per 4-server setup

Vuvuzela[18] 1-1 Messaging yes at least one non- 2M users 96 Kbps
compromised server

DP5[23] Chat Presence yes at least one non- 1M users 18.00 Kbps
compromised server

PROUD[27] User Discovery yes non-colluding nodes millions of users 4.8 Kbps

OUTOPIA User Discovery yes honest but curious nodes millions of users 2 Kbps

Table 1. Comparison of related approaches. Some rely on Tor and some are based on non-
compromised servers. Their overhead varies from a few Mbps down to several tens of Kbps.
Interestingly, despite their differences, they all have a common assumption: all of them assume
the existence of a secure out-of-band channel (SOOBC) that enables them to bootstrap their
process. This channel allows friends to exchange an one-time-only boot-strapping information:
a public key, a password, or whatever each method is using.

anonymous messaging, e.g., Vuvuzela [18], Apres [19], Riposte [20],
Dissent [21]), Pung [22], DP5 [23], Talek [24] or AnoNotify [25]
can provide metadata privacy but either do not consider User Dis-
covery as part of their design or rely on Tor, PIR[26]S or anonymous
broadcasts (see Table 1). As a consequence, their limited scalability
and heavy overheads open questions about their practicality.

In this paper, we advocate that similar to the world wide web par-
adigm, User Discovery needs to be independent and unbundled from
encrypted messaging apps, enabling users to find each other without
relinquishing the privacy of their entire address book. Therefore,
we propose OUTOPIA: an Oblivious User-TO-Personal IP Address
discovery service to let users find the IP address of their friends in
a privacy-preserving way. What is more, OUTOPIA is lightweight,
able to provide measurable privacy guarantees to every social asso-
ciation of the user. So users are aware of the exact probability for
each of their friendships to be revealed.

The contributions of our approach can be summarised as follows:
(1) We design OUTOPIA: an independent third-party discovery

service to provide privacy-preserving User Discovery without
revealing who is socially connected with whom. OUTOPIA, en-
sures the confidentiality of the stored data (user-to-IP mappings)
and provides measurable privacy to the associated metadata
(who queries for whom).

(2) We present an analytical evaluation of our approach in terms of
privacy and we derive closed-form formulas for the disclosure
probability and the sizing of the buckets used in our system. By
conducting a simulation-based analysis we present the generated
traffic as a function of the provided level of privacy in our system.

(3) We implement a prototype of OUTOPIA and early performance
results show that it imposes negligible latency while at the same
time it provides measurable privacy to the user’s social graph.

2 THREAT MODEL
In this paper, we assume a TLS-capable directory server, which holds
information about the (encrypted) IP addresses of its users. Users
(i) inform the server about their IP address (i.e., set operation),
(ii) inform the server about any changes in their IP address (i.e.,
update operation), and (iii) ask the server for the IP addresses of
their friends (i.e., get operation). All IP addresses above are stored
and transferred encrypted. The server can be maintained by anyone
as per the DNS and Tor paradigm.

Similar to other studies [27], we assume this directory server is (i)
honest: it faithfully implements the proposed protocol without trying
to cheat by performing active attacks (e.g., by injecting dummies)

Notation Explanation

𝑑𝑑𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 The dead-drop used by Bob to communicate his IP address to Alice
𝑛𝑎𝑚𝑒 (𝑑𝑑𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 ) The name of the dead-drop used by Bob to communicate his IP address to Alice
𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 The bucket where𝑑𝑑𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 is placed
𝐼𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 The index inside bucket 𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 where𝑑𝑑𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 is placed
𝑇 Duration of an epoch
𝑁 Average number of friends per user
𝑇𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 Timestamp of the latest version of 𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 Alice has downloaded.
𝑈 Update rate of IP addresses
𝐷𝑃 Disclosure Probability.

Table 2. Summary of Notation

against the service it hosts, thus jeopardising its own users. But (ii)
it is also curious aiming to collects all the data it is given and tries
to infer as much information as possible. The server may use this
information to, for example, discover who is friends with whom
and reconstruct its users social graph: e.g., if Bob updates its IP
address and later Alice reads this update, the server may infer that
Alice is friends with Bob. Additionally, we assume the server being
a potential victim of data leak due to either breaches [28], bad
maintenance [4, 29, 30], or even insider attacks.
Bootstrapping: Similar to related works (see Table 1) but also
current apps (e.g., WhatsApp, Telegram), we assume that the users
bootstrap their friendship, by exchanging necessary information
(e.g., public keys, bucket names) via a secure out-of-band channel.

3 SYSTEM OVERVIEW
In the rest of the paper, we engage two users, called by convention
Alice and Bob and a TLS capable server that provides User Discov-
ery. Let us assume that Alice is friends with Bob and she would like
to talk to him. Assume also that Bob would like to accept Alice’s
communications and thus he would like to confidentially share his
IP address. This way, Alice can open a socket to Bob’s device and
communicate in a peer-to-peer fashion.

The main concept of our approach is the concept of a dead-drop: a
message with a long hard-to-guess name that contains the encrypted
IP address of Bob. The dead-drop is what Bob uses to place his
IP address without needing any authentication: the long hard-to-
guess name of the dead-drop is Bob’s assurance that nobody else
updates the dead-drop. The dead-drop name is shared between Bob
and Alice during their friendship’s bootstrapping. To hide the fact
that Alice and Bob are accessing the same dead-drop we put the
dead-drops in buckets. Although Bob updates his own dead-drop
only, Alice reads the entire bucket where Bob’s dead-drop is stored.
The exact size of the bucket is a parameter of OUTOPIA: the larger
the bucket size, the less certain the server is that Alice would like
actually to query for Bob. For example, if the size of the bucket is
set to be 1,000 dead-drops, Alice may be friends with any of the
1,000 people who created these dead-drops. In our terminology, the
disclosure probability of Alice and Bob’s friendship will be 0.1%
(see Section 4.1 for detailed privacy analysis).

In Figure 1, we present the high level overview of our design,
where a OUTOPIA server is responsible for (i) receiving Bob’s dead-
drops and placing them in buckets and also (ii) respond to Alice by
sending her the bucket she queries for. When Bob changes his own
IP address, (step 1a), encrypts it (step 2) puts all the information in
a dead-drop and sends the dead-drop to a OUTOPIA server (step
3). The red arrow updates the dead-drop that is for Alice and the
rest of the arrows update the dead-drops for the rest of Bob’s friends.
The OUTOPIA server adds the dead-drop in bucket 8 (step 4) and
gives this information to Bob who conveys the information back to
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Alice. When Alice would like to find Bob’s current IP address, she
asks a OUTOPIA server for bucket 8 (steps 5a and 5b). The server
provides the bucket (step 6a) and Alice filters out the dead-drop she
is interested in (steps 6b and 7). Finally, Alice decrypts the contents
of the dead-drop (step 8) and finds out Bob’s IP address.

3.1 Protocol description
Let us describe the basic operation of OUTOPIA in more detail
using the notation as summarised in Table 2. OUTOPIA protocol
consists of three main operations:
1. Add a new dead-drop: When Bob wants to let Alice know
of his current network address, he creates a new dead-drop (say
𝑑𝑑𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 ) in the form of a key-value pair, with the dead-drop
name (say 𝑛𝑎𝑚𝑒 (𝑑𝑑𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 )) as key and the encrypted IP address
as value. Bob has one dead-drop for each and every one of his friends.
Thus, no two friends of Bob share the same dead-drop and thus he
can individually unfriend Alice. The name of each dead-drop is
unique, generated by the user using SHA-256 function and therefore
it cannot be guessed (nor overwritten). Apart from Bob, nobody
else can learn the name of his dead-drop. Regarding the dead-drop’s
payload, it includes Bob’s current IP (𝐼𝑃𝐵𝑜𝑏 ) encrypted with Alice’s
public key 𝐾𝑝𝑢𝑏

𝐴𝑙𝑖𝑐𝑒
(only she can decrypt): 𝐸

𝐾
𝑝𝑢𝑏

𝐴𝑙𝑖𝑐𝑒

(𝐼𝑃𝐵𝑜𝑏 ). As soon

as the server receives Bob’s new dead-drop request, it stores the
received tuple:

dead-drop name: dead-drop value:
ℎ(𝑛𝑎𝑚𝑒 (𝑑𝑑𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 )) 𝐸

𝐾
𝑝𝑢𝑏

𝐴𝑙𝑖𝑐𝑒

(𝐼𝑃𝐵𝑜𝑏 )
Note that the server performs another round of hashing before storing
𝑛𝑎𝑚𝑒 (𝑑𝑑𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 . By doing that, we ensure that even in the case of
a data breach, the attacker cannot learn the name of the dead-drop
and this way impersonate Bob by overwriting his dead-drop. The
server stores the above tuple in a bucket. Once the bucket is full1,
the server informs Bob of (i) the bucket name (i.e., (𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 ))
as well as (ii) the index (position) of the added dead-drop in it
(i.e., 𝐼𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 ). Bob share this information with Alice during the
bootstrapping process of their friendship. The server makes sure that
all dead-drops are distributed to the buckets in a way that no bucket
receives more than one dead-drop from the same user. Indeed, if Bob
had several of his dead-drops in the same bucket, then the server
might conclude with high probability that Alice is friends with Bob.
2. Query for a dead-drop: When Alice wants to find the IP address
of Bob, she queries the server for the entire bucket 𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 : the
bucket which contains several dead-drops, including the dead-drop
Bob created for Alice. The server responds with all the encrypted IP
addresses in the bucket and their relative position in this bucket (but
not the hashed names of their dead-drops). Once she receives bucket
𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 , Alice selects Bob’s dead-drop (position 𝐼𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 ) and
decrypts its contents by using her private key.

Time and frequency of querying is another piece of metadata that
may reveal social association. When Bob changes his IP address,
Alice (possibly along with several other people who may not be
friends with Bob) may ask for bucket 𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 . When Bob changes
his IP address again, Alice may again ask for bucket 𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 .
Pretty soon, the server might be able to establish a pattern: When
1The bucket needs to be full before Alice is allowed to access it, otherwise the server
might be able to infer that she is friends with Bob (with higher-than-normal probability.
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Fig. 1: Design overview: Bob encrypts his IP address (step 2) and creates one dead-drop per
friend before sending them to OUTOPIA (step 3). OUTOPIA adds the dead-drops in buckets
(step 4) and responds back to Bob with the bucket numbers. When Alice wants to find Bob’s
current IP address, she asks OUTOPIA for the proper bucket (bucket #8 in the example - steps
5a and 5b). The server responds with the bucket (step 6a) to Alice, who filters out the dead-drop
she is not interested in (steps 6b and 7). Finally Alice decrypts the contents of Bob’s dead-drop
(step 8) and finds out his IP address.

Bob changes his IP address, Alice asks for bucket 𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 , thus,
Alice probably is friends with Bob.

To deprive the server from this knowledge, we divide the time
into periods – epochs. Each epoch lasts for 𝑇 seconds. All clients
of OUTOPIA (including Alice) at each and every epoch request all
buckets they are interested in. That is, periodically, all clients ask
for all buckets that contain dead-drops of their friends. To make this
possible while reducing the amount of information transmitted, in
OUTOPIA, the server does not respond to queries with the entire
bucket 𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 to Alice, but only its changes (i.e., the Delta) since
the last time she queried for it. This way, Alice periodically queries
for bucket deltas using again (a) the bucket ID (e.g., 𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 ) and
(b) timestamp 𝑇𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 of the most recent bucket version she has
downloaded. If the server has a later version (timestamp larger than
𝑇𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 ) then it responds with the changes (i.e., only the modified
dead-drops), otherwise with a NO-CHANGES message.
3. Update an existing dead-drop: It is apparent, that whenever
Bob changes his IP address he needs to update the contents of
𝑑𝑑𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 so Alice can relocate him in the network. To do that, he
issues an update request to the server denoting the dead-drop name
(i.e., 𝑛𝑎𝑚𝑒 (𝑑𝑑𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 )) that he wants to update, along with the
new value (i.e., his encrypted IP address). The server computes the
hash function ℎ(𝑛𝑎𝑚𝑒 (𝑑𝑑𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 )) and updates the dead-drop. It is
possible that at some point in time Bob may want to unfriend Alice.
This implies that Alice should not be able to know Bob’s current IP
address any more. To do so, whenever Bob wants to drop Alice from
a friend, he updates the contents of dead-drop 𝑑𝑑𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 to a value
that is not his valid IP address. In this way, Alice will not be able to
talk to Bob again, since she does not know his IP address any more.

4 ANALYTICAL EVALUATION
4.1 Performance Analysis
We analyse the traffic generated by OUTOPIA. Let us assume that
the duration of the epoch is 𝑇 (units of time), and each user has (an
average of) 𝑁 friends. For simplicity, we assume that each friend
of Alice is placed in a different bucket. In order to have the most
up-to-date IP addresses of all her friends, Alice will at each and
every epoch, receive updates from 𝑁 buckets. The overhead of these
updates includes:
(i) a constant overhead (say 𝐶0), which is independent from the

number of dead-drops that have changed in the bucket. This
constant overhead has to be paid once per epoch (per bucket)
independently from how many dead-drops have changed, and
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Fig. 2: Traffic generated per client as a function
of bucket size. We see that the traffic increases
linearly with the size of the bucket as expected.
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reasonably small for today’s networks.
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Fig. 5: Throughput of a bucket read operation.
The throughput of the server increases near lin-
early with the more clients querying the server.
After 1,200 ops/sec, the performance levels off,
as the network is becoming saturated with data
transfers.

(ii) an overhead proportional to the number of changed dead-drops.
Assuming an update rate of 𝑈 (per unit of time), then we expect
𝑈 ×𝐵×𝑇 users to have changed their dead-drop in bucket 𝐵. This
will result in an amount of data (less or) equal to𝐶1 ×𝑈 ×𝐵 ×𝑇 ,
where 𝐶1: constant factor related to the size of a dead-drop.

Thus, for each bucket, each user will receive (𝐶0 +𝐶1×𝑈 ×𝐵×𝑇 )
amount of data per epoch or (𝐶0/𝑇 +𝐶1 ×𝑈 ×𝐵) amount of data per
unit of time. If each user has an average of 𝑁 friends, and since we
assume that each and every friend’s dead-drop will be in a different
bucket, the total amount of data received (per unit of time) will be:

(𝐶0/𝑇 +𝐶1 ×𝑈 × 𝐵) × 𝑁 (1)

The impact of the Bucket Size: To get a feeling of how much
traffic is generated we make some reasonable assumptions about
the parameters involved. Let us assume a constant overhead of 64
bytes (i.e., 𝐶0 = 64), an incremental overhead of 32 bytes per dead-
drop (i.e., 𝐶1 = 32), an update rate (𝑈 ) of 4 times a day (1: home
wifi-cellular, 2: cellular-office wifi, 3: office wifi-cellular, 4:cellular-
home wifi), and an average friend population of around 200 people
(i.e., 𝑁 = 200). Figure 2 shows the traffic generated by OUTOPIA
per user per unit of time as a function of the bucket size 𝐵 for the
above defined values of the rest of the parameters. We see that the
traffic increases linearly with the size of the bucket as expected.
It is interesting to see that for a bucket size of around 1000 dead-
drops, OUTOPIA generates about 2.5 Kbit/s, which is reasonably
small for today’s networks. Varying other parameters of equation
1, one may easily compute OUTOPIA’s overhead under different
circumstances. The main point, however, here is that for reasonable
sets of parameters, the overhead remains relatively low.
The impact of the Epoch Duration: In Figure 3, we show the
traffic generated by OUTOPIA as a function of the duration of the
epoch 𝑇 . We see that for an epoch size of around 200-400 seconds,
the generated traffic is less than 0.5 Kbit/s, which is practically
negligible for today’s networks. In Figure 4, we vary both 𝑇 (the
duration of the epoch in x axis), and 𝐵 (the bucket size). We see that
for the most part, the generated traffic stays in the range of 0.5 to 1
Kbit/s (shown in blue colour), which is practically insignificant.

4.2 Privacy Analysis
The Disclosure Probability: As a metric of privacy, we use the
notion of disclosure probability as introduced in [31, 32]. As disclo-
sure probability (𝐷𝑃), we define the probability of Alice and Bob’s

association to be revealed to the server (i.e., the confidence of the
server that Alice is friends with Bob).
A Priori and a Posteriori probabilities: To place this work in
the proper context, we assume that the server has some a priori
knowledge about Alice and Bob. This knowledge enables the server
to compute an a priori probability of whether Alice is friends with
Bob. This probability can be very low, or very high. For example,
if the server has no information about Alice and Bob, the a priori
probability will be low. On the other hand, if the server knows e.g.,
that Alice is married to Bob, then the a priori probability will be
high. The main point here, is that in all cases, the server has some
a priori confidence whether Alice is friends with Bob. The goal of
this privacy analysis is to understand whether the use of OUTOPIA
is going to increase the server’s confidence with regards to whether
Alice is friends with Bob. Note that nobody can decrease the server’s
confidence of its knowledge of whether Alice is friends with Bob (the
server can always ignore this information and resort to its a priori
higher confidence). The server’s goal is to capture more information
to increase its a posteriori probability.
What can the server learn from dead-drops? In OUTOPIA, the
disclosure probability 𝐷𝑃 is 1/𝐵 (𝐵: the size of the bucket), since
the server observes that Alice is accessing bucket 𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 , which
has 𝐵 dead-drops. (i) If the a priori probability that the server had
computed was less than 1/𝐵 (say 1/2𝐵), then the server will have
gained some knowledge: the server increased its confidence that
Alice is friends with Bob from 1/2𝐵 to 1/𝐵. In the extreme case
where the bucket size is only one (i.e., 𝐵 = 1), then the a posteriori
probability is 1, and thus the server is 100% sure that Alice is friends
with Bob. One the contrary, (ii) if the server’s a priori probability
was higher than 1/𝐵 (say it was 2/𝐵), then OUTOPIA did not really
provide any helpful information to the server: it will ignore the
fact that Alice is accessing Bob’s bucket and stay with its a priori
probability of 2/𝐵. Given that Bob retrieved the bucket that contains
Alice’s dead-drop, the server may try to increase its confidence that
Alice is friends with Bob as follows: Let us assume that the server has
an a priori estimate2 of whether Alice is friends with each and every
member (say 𝑖) of the bucket 𝐵𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 , thus 𝑝𝑖 : the probability
that Bob is friends with the member who updates dead-drop 𝑖. In
the best case (for the server) this estimate can be equal to “1” (i.e.,
the server is certain that Alice is friends with Bob) and in the worst
case (for the server) the same value is much much lower. Based on
the fact that Alice is accessing the bucket, which contains Bob’s
2We make no assumptions where the server got this knowledge from.
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Fig. 6: Throughput of a bucket deltas read op-
eration. The performance does level off after a
sufficient number of clients hitting the server.
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Fig. 7: Throughput of a dead-drop update op-
eration. More than 4,000 ops/sec are achieved
before the performance starts leveling off.

dead-drop, the server can compute an updated estimate of whether
Bob is friends with Alice as follows:
• 𝐴𝑏𝑜𝑏 : 𝐴𝑙𝑖𝑐𝑒 𝑖𝑠 𝑓 𝑟𝑖𝑒𝑛𝑑𝑠 𝑤𝑖𝑡ℎ 𝐵𝑜𝑏
• 𝐴𝑏𝑢𝑐𝑘𝑒𝑡 : 𝐴𝑙𝑖𝑐𝑒 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑑 𝑡ℎ𝑒 𝐵𝑢𝑐𝑘𝑒𝑡
• 𝐴𝑠𝑜𝑚𝑒 : 𝐴𝑙𝑖𝑐𝑒 𝑖𝑠 𝑓 𝑟𝑖𝑒𝑛𝑑𝑠 𝑤𝑖𝑡ℎ 𝑠𝑜𝑚𝑒𝑜𝑛𝑒 𝑖𝑛 𝑡ℎ𝑒 𝐵𝑢𝑐𝑘𝑒𝑡

𝑝 (𝐴𝑏𝑜𝑏 |𝐴𝑏𝑢𝑐𝑘𝑒𝑡) = 𝑝 (𝐴𝑏𝑢𝑐𝑘𝑒𝑡 |𝐴𝑏𝑜𝑏) ×
𝑝𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏

𝑝 (𝐴𝑠𝑜𝑚𝑒) (2)

If Bob is friends with Alice, then obviously he will access the Bucket
with probability 1: 𝑝 (𝐴𝑏𝑢𝑐𝑘𝑒𝑡 |𝐴𝑏𝑜𝑏) = 1. The adversary now only
needs to compute the probability 𝑝 (𝐴𝑠𝑜𝑚𝑒): if the size 𝐵 of the
bucket is large and if we assume that the average probability of
Alice being friend with anyone is 𝑝, then 𝑝 (𝐴𝑠𝑜𝑚𝑒) ≈ 𝐵𝑝. Thus, the
updated probability is:

𝑝 (𝐴𝑏𝑜𝑏 |𝐴𝑏𝑢𝑐𝑘𝑒𝑡) =
𝑝𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏

𝐵𝑝

Note that this updated probability will be larger than the a priori
estimation 𝑝𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 , if 𝑝𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏 <

𝑝𝐴𝑙𝑖𝑐𝑒_𝐵𝑜𝑏
𝐵𝑝

or if 𝐵𝑝 < 1 which

is true when: 𝐵 < 1/𝑝. The above equation is a very powerful, yet
elegant way to estimate what should be an appropriate bucket size:
the bucket is large enough when the bucket size 𝐵 > 1/𝑝.

5 EXPERIMENTAL EVALUATION
Implementation: To assess the feasibility and effectiveness of OUT-
OPIA, we develop a prototype of our system. We build two processes:
a client and a server. The server module runs on an Apache web
server listening for the add(), update(), and get() requests
of the clients. Our API consists of only four different calls:
• add_dead_drop(deadropID, userID,
encrypted_message), which adds a new dead-drop
in the system and returns the ID of bucket the dead-drop was
placed in and its relative position (𝐵𝑖 , 𝐼𝑖 ) within this bucket,

• update(deadropID, encrypted_message) to up-
date the value of a specific dead-drop of the system,

• getBucket(𝐵𝑖) to request from the directory server a specific
bucket, and finally

• getBucketDelta(𝐵𝑖 ,𝑇𝐵𝑖) to request for possible dead-
drop deltas of bucket 𝐵𝑖 from time 𝑇𝐵𝑖 and after.

To implement the necessary cryptographic functions, we use
the OpenSSL library: SHA-256 for secure hashing and the hy-
brid cryptosystem of Elliptic Curve Integrated Encryption Scheme
(ECIES) [33] for public key encryption using 256-bit keys. ECIES
allows us to produce relatively small ciphertexts while providing an
adequate security level of 112 bits [34].

Operation Execution Time

Read a bucket (the bucket contains 1,000 dead-drops) 4.26 ms
Read a bucket Delta (one dead-drop of the 1,000 is updated) 1.70 ms
Update a dead-drop in a bucket of 1,000 dead-drops 1.27 ms

Table 3. Execution time per operation. Alice reads the entire bucket only once, and this opera-
tion takes 4.26 ms; such a low latency is unable to affect her user experience. After that, Alice
reads periodically bucket Deltas in 1.70 ms.

5.1 System Performance
Next, we set out to evaluate the system performance of our proto-
type. Our experimental infrastructure consists of two desktops (a
client and a server) connected with Gigabit Ethernet. The client is
equipped with a Hyper-Threading 6-core Intel Xeon E5-2620 pro-
cessor operating at 2.00GHz, 15MB SmartCache, and 8GB of RAM.
The server is equipped with a Hyper-Threading 12-core Intel Xeon
E5-2697 v2 at 2.70GHz, 30MB SmartCache, and 32GB RAM.
Per Operation Performance: We measure how much time it takes
Alice to find the IP address of Bob. That is, Alice asks OUTOPIA
server for the bucket that contains Bob’s dead-drop.
Reading an entire bucket: In our experiments we employ a (single-
threaded) client querying the server for a particular bucket.We repeat
each experiment 100 times and report averages. As seen in Table 3 it
takes 4.26 ms on average to read an entire bucket (1000 dead-drops)
which is practically unnoticeable. This includes the time it takes for
the client to (i) fetch the proper bucket, (ii) filter the meaningful
dead-drops and (iii) decrypt their contents.
Reading delta: We measure the execution time of the read delta
operation: that is, the time it takes to retrieve the changes of the
previously fetched bucket. Assuming that the delta regards the mini-
mum possible change (one dead-drop changed), we see in Table 3
the time it takes to retrieve such delta is about 1.70 ms (2.5× less
than reading the entire dead-drop). This relatively small difference is
due to the fact that this time is dominated by connection establishing
overheads (e.g., TCP/IP and TLS set up times).
Update dead-drop: We measure how much time it takes for Bob to
update his dead-drop. As we see in Table 3 the time for an update
operation is as low as 1.27 ms. Again, this time is dominated by
socket and TLS set up times, since the amount of data that the client
transfers is relatively small: 64 bytes per dead-drop.
Scalability: As a next step, we set out to explore the capabilities of
a server running OUTOPIA and specifically how this scales with an
increasing load. Thus, we measure the lower bound of throughput for
a single directory server by hitting it with an increasing number of
workers (that simulate users), each opening as many connections as
are possible. Figure 5 presents the throughput of the server in bucket
read operations as a function of the number of workers. Overall, a
single directory server process was able to successfully serve more
than 1,200 operations per second.

In Figure 6 we plot the results after measuring the throughput of
the server in delta read operations. We see that for deltas, OUTOPIA
can perform 1,400 operations per second. Similarly, in Figure 7 we
present the number of dead-drop update operations per second. Since
the updates are lightweight for the server and the client, the process
can easily sustain over 4,000 operations per second. Overall, and
considering that OUTOPIA can utilise as many servers as buckets,
we see that it can easily scale to millions or even billions of users.
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6 DISCUSSION
Inactive Users: There are cases, where users may stop updating
their dead-drops and become inactive. Thus, one may say that since
no querying users are actually interested in idle dead-drops, the
server can increase the disclosure probability of the rest of the dead-
drops in the particular bucket. Fortunately though, there are also
users that are not very mobile and thus rarely (if not never) need
to update their dead-drops. The friends of these non-mobile users
will continue to fetch deltas for this bucket. So, the server cannot
distinguish a non-mobile user from an inactive user and thus cannot
increase the disclosure probability of the dead-drops.
Bidirectional friendships: So far, we described the case that Alice
wants to talk to Bob, but friendships are usually bidirectional and
Bob may want to talk to Alice, too. In these cases, the server may
have a higher probability in estimating that Alice and Bob are friends:
e.g., assume that when Bob wants to share his IP address with Alice,
he uses a dead-drop in bucket 𝐵1 and when Alice wants to share
her own with Bob, she uses bucket 𝐵2. If the server observes only
bucket 𝐵1 or only bucket 𝐵2 then it has little information on whether
Alice is friends with Bob. However, the server may combine the
information from 𝐵1 and 𝐵2 as follows: Bob updates a dead-drop
in 𝐵1 and reads all dead-drop in 𝐵2. Thus, Bob is contained in the
intersection of two sets: (i) the set of clients who update 𝐵1 and
(ii) the set of clients who read 𝐵2 – let us call this intersection 𝐵𝑎𝑙𝑙 .
Similarly Alice is contained in the intersection of two sets: (i) the
set of clients who update 𝐵2 and (ii) the set of clients who read 𝐵1 –
let us call this intersection 𝐴𝑎𝑙𝑙 . By observing both 𝐵1 and 𝐵2, the
server knows that each one of the people in 𝐵𝑎𝑙𝑙 are friends with
at least one of the members 𝐴𝑎𝑙𝑙 . If the sets 𝐵𝑎𝑙𝑙 and 𝐴𝑎𝑙𝑙 are very
small (say singletons), the server is able to conclude with a very
high probability that Alice is friends with Bob. To prevent the server
from reaching this conclusion, we need to ensure that 𝐵1 and 𝐵2 are
located in different servers which do not collude (similar to other
approaches [23]). Fortunately, this is not difficult since OUTOPIA
is inherently parallel and can employ several different servers – as
many as one server per bucket. Thus, Alice may easily choose a
server different from the one Bob used to store his dead-drop.
Freshness of information: Alice requests for the bucket every 𝑇
seconds. This means that if Bob changes his IP address Alice may
take as many as 𝑇 seconds to get the update. Depending on 𝑇 , this
may be too long for Alice. In our system, we envision a value of𝑇 in
the range of several seconds to a few minutes. Figure 3 suggests that
if the epoch duration 𝑇 is 4 minutes, the generated traffic is about 1
Kbps. If the epoch duration drops down to 0.5 minute, the generated
traffic is about 4 Kbps. So an epoch size of around 1 minute sounds
reasonably small to keep the generated traffic to small numbers. We
understand that one might say that waiting for one minute or even
30 seconds for Alice to talk to Bob might be too much. We must
make clear that when Alice wants to talk to Bob, she does not wait
for 30 seconds to find Bob’s IP address. Alice already knows Bob’s
IP address (every 30 seconds she downloads the IP addresses of all
her friends) so when she wants to talk to Bob there is no delay.

7 RELATED WORK
Riposte [20] leverages PIR and scales to a few million users under
the assumptions that (i) only a small fraction of users write to the

database, and (ii) epochs last several hours (few hundred writes per
second). Although Riposte can protect the social associations, it
relies on broadcasting all messages to all users thus imposing signif-
icantly high communication costs. Dissent [21] and Herbivore [35]
adopt the similar broadcast nature and their scalability is limited to
broadcasting groups of up to 5K users each. In [19], authors propose
Apres, the approach behind Drac [36]. Apres assumes a dedicated
server, which serves as a hub able to store and forward messages.
Apres requires the use of Tor to access the server anonymously. Thus,
whenever Alice wants to connect with Bob, she connects via Tor
to the server, and adds her message in an implicit address, created
just for them (similar to our dead-drop). PROUD [27] is a privacy
preserving User Discovery service that leverages the existing DNS
to distribute cryptographically secure user-to-IP mappings. Contrary
to our work, PROUD assumes two non-colluding type of DNS nodes
for user record registering and resolving. Loopix [37] is an anony-
mous communication system that provides bi-directional anonymity
and unobservability. It leverages Poisson mixing and constantly
sends drop cover messages to random receives. Overall message
latency is on the order of seconds. Similar to our approach, Loopix
assumes that a fraction of the mix/provider relays are honest.

Vuvuzela [18] is a system for private communication under heavy
surveillance. It uses chains of servers that use onions and cover
traffic (based on the principles of differential privacy) to conceal the
users’ message exchanges. Vuvuzela along with its enhancement
Alpenhorn [38] can preserve the privacy of the user’s social graph.
Its heavyweight approach requires the users to be constantly online
and participate in every round by sending no-op messages even dur-
ing their idle times. Apparently this results to a significant bandwidth
requirement per user (around 12 KBytes/sec – or 12 GBytes/sec in
total for 1M users). Pung [22] is a key-value store to provide private
communication based on a computational PIR model. To improve its
performance, Pung uses a probabilistic multi-retrieval scheme, thus
allowing its server to efficiently process multiple retrievals from the
same user. Although this scheme allows Pung to reduce computa-
tional costs by up to 11×, it significantly increases its network costs,
thus rendering its applicability as questionable.

8 CONCLUSION
In this paper, we decouple User Discovery from the messaging apps
by proposing OUTOPIA: an independent third-party discovery ser-
vice to provide privacy-preserving User Discovery without revealing
who is socially connected with whom. Our approach provides mea-
surable privacy individually to every social association of the user.
Preliminary performance results suggest that OUTOPIA is scalable
for the increasing number of users and users are able to discover
each other in no more than a few milliseconds, while generating a
negligible traffic overall. We envision OUTOPIA as a multi-purpose
discovery system which can be integrated in several other applica-
tions beyond IP addresses, thus allowing Bob to privately share e.g.,
his telephone number, current geolocation or Tor onion service.
Acknowledgements: This project received funding from the EU
H2020 Research and Innovation programme under grant agreement
No 830929 (CyberSec4Europe). These results reflect only the au-
thors’ view and the Commission is not responsible for any use that
may be made of the information it contains.
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